While he has been moping around in a foreign airport lamenting the vast swathe of ocean between him and his girlfriend I've been doing some maths. The fruit of this endeavour? An application which can predict, with varying levels of confidence, the time left for an object/disaster/entity to exist. A blanket of ash in the atmosphere for example.
You can grab the program here:
(It is named in honour of Dave.)
So, how does it work?
Probability! What we are doing is calculating the probability of a random moment in time being in a particular section of something's life. This turns out to be very easy. There is a 50% chance that our moment is in the first half (first 50%) of the lifetime, a 25% chance of it being in the last quarter (last 25%) of the lifetime and a 60% chance of it being in the middle 3 fifths (middle 60%) of the lifetime. You can probably spot what's going on here; there will always be a n% chance that a random moment in time between object A's beginning and end will be within a n% section of A's life.
We are interested in the middle section of this objects life. From this we can deduce with n% certainty the minimum and maximum percentages of lifetime that it has left. I'm going to start using the volcanic ash as an example now to try and make things clearer.
At the moment the ash cloud has been disrupting things for 2 days. I want to know, with 60% certainty, how much longer this will last. Now, I don't know exactly how far through the ash clouds life time I am right now. Only that I am somewhere between its beginning and its end. but I can say that it is 60% probable that I am within the middle 60% of its life (between the parentheses { }).
[--20%--{------60%------}--20%--]
So, the ash cloud will have expended somewhere between 20% and 80% of its life already. meaning that it has somewhere between 80% and 20% of its life left to 'live'. Now I know that the ash cloud has been around for about 2 days. If that is 20% of its life then its total life will be:
5 * 2 days
(5 = 100% / 20% )
which is equal to 10 days.
If 2 days is 80% of its life then its total life will be:
2 days + (2 days / 4)
(4 = 80% / 20%)
Which is equal to 2.5 days.
Now that we know the minimum and maximum values for the ash clouds total life we are one small step away from finding out how much time is left; take 2 days away from minimum and maximum values:
10 - 2 = 8
2.5 - 2 = 0.5
These results tell us, with 60% confidence, that there are between half a day and 8 days left until the ash cloud clears and Dave can be reunited with the love of his life.
Some of you will be thinking that 0.5 to 8 days is very vague, especially if we are only 60% confident that this range is correct and you would be right! The sacrifice we make for having any real confidence at all is the precision of our results. This becomes even more apparent when we try increasing our confidence level. Bumping it up to 80% gives minimum and maximum remaining life values of 0.2222 and 18 days respectively. Also, this doesn't really work if you already have a good idea of how long something will be around for because you wont really be picking a random point in time. But wait! Before you dismiss this as being useless (OK, I admit it is pretty useless but keep reading anyway) understand that, as long as you include your confidence level, any statements you make using this method are guaranteed to be 100% true. Why shouldn't they be? This is maths, the universal language of truth, not magic.
Congratulations on making it to the end of my post. As a reward have the source code to my little program, it is written in vb.net, you can grab the free express edition from Microsoft here. I used a slightly less round-about way of doing the calculations but they are still essentially the same as the ones in this post.
feel free to comment, criticize and question this post. I'll do my best to reply to everything (within reason).
David.
Sands Casino New Jersey Review
ReplyDeleteThis is one of the newest slots online at Sands Casino NJ. We've got 샌즈카지노 all the 바카라사이트 info you need to get excited. We have all the information you need 제왕 카지노 before you play!
How to bet at a casino: Tips, FAQ and Strategies
ReplyDeleteIf you are a newcomer 순천 출장안마 to 수원 출장마사지 the casino world, 충청남도 출장샵 you will see the 익산 출장샵 game in some ways. In this case, it's the casino game you love 광주 출장안마 to play,
Sportsbooks will often shift the moneyline by a few of} factors on either aspect of those unfold bets. Parlays are very interesting to bettors as a result of|as a result of} they pay out rather more than the entire winnings of their constituent straight bets. However, it is rather more difficult to hit on a parlay than it is on a single wager. Moneyline bets wouldn't have a spread or handicap, and require the chosen group to win the sport outright. The favored 바카라사이트 group pays decrease odds than does the underdog; thus, it acts primarily as an enticement to take the underdog for a better payout. Sometimes a bettor might couple this type of|this sort of|this type of} wager on the favored group to increase the payout of a parlay.
ReplyDeleteNicee blog
ReplyDelete